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Radiogenic sources of heating in the form of short-
lived radioisotopes (SLRs) have been theorised since
the 1950s to play an important role in planet formation
[1]. SLRs were subsequently found to be the dominant
source of planetesimal heating in the early solar system
[2]. Radiogenic heating also results in loss of H,O in
a nascent planetesimal through vaporisation and out-
cassing, which would significantly impact the liquid
water content of the resultant protoplanet [3]. Whilst
the SLR °’Fe did not provide sufficient heating in the
early solar system, increased enrichment due to super-
novae in star forming regions may result in a greater
impact in other systems.
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Figure 1. Planetary evolution due to desiccation [4].

Methodology

The I2ELVIS [5] hydrodynamical code was used to per-

form multiple simulations to determine the influence iccation barely occurs even at an ®“Fe enrichment of

SLR enrichment has on retained water in large plan-
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Results - Iron Core Model

For the first model, a core of iron is surrounded by a
mantle of hydrous silicates. The radius of this core
relative to the planetesimal is described with variable
U = r./r,. Whilst this is a simple model to implement
and simulate, this implies that core stratification oc-
curs extremely quickly (< 1 Myr from CAI formation)
[7], however in the case of significant SLR enrichment
this process could be accelerated. Due to this, this
model as well as an undifferentiated model are simu-
lated.

Core model, ¥ = 0.5

Figure 2. Comparison of core and grain composition models for similar iron
volume fractions.

Grain model, ® = 0.125

The parameter space exploration was of the isotopic
enrichment of both “°Al and ®“Fe for a planetesimal
of radius 100km. 2°Al enrichment was varied from
0 < Aoga; < 10 and *“Fe enrichment was varied over
0 < Agore < 107,
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Figure 3. Remaining water fraction for simulations where ¥ = 0.25.
For simulations where ¥ = 0.25 it was found that des-

Agore = 10°x, where a final water fraction of H; = 0.796

etesimals. Simulations had a maximum run time of was found.

20 Myr, and planetesimals were assumed to form 1 Myr
after CAI formation. The H,O content within the plan-
etesimal is tracked over time, and based on whether a
cells temperature has exceeded a threshold tempera-
ture of T,,, = 1223 K. The final planetesimal H,0O abun-
dance is then calculated from the fraction of cells that
have exceeded T\, (H; = Nyet/Nawy). Radiogenic heat-
ing is simulated through introduction of a heating rate,
given by the equation:

NAESLR)\B_ \

MSLR

Qsir(t) = feciZsir : (1)

where f is the elemental abundance by mass, 7 is the
1sotopic enrichment, N, 1s Avogadro’s constant, F 1s
decay energy, A is the decay constant, m is the atomic
mass, and ¢ 1s the elapsed time [6]. Enrichment is nor-
malised to early solar system levels:

ZSLR

, (2)

Agir =
ZSLR.®

where Zsir . 1S the 1sotopic enrichment of the system
and Zsir e 1S the early solar system enrichment.
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Figure 4. Remaining water fraction for simulations where ¥ = 0.5.

In simulations where U = (.5, ®°Fe enrichment is more
influential on desiccation, but final water fraction in
systems with high ®Fe enrichment and “°Al depletion
are comparable to simulations where “°Al is enriched
only slightly above early solar system estimates.

effect on the water content of protoplanets

Joseph W. Eatson'
'The University of Sheffield

Tim Lichtenberg?

“University of Groningen

Results - Iron Grain Model

The second model consists of a hydrous silicate body
where iron marker “grains” are randomly interspersed.
The amount of ®°Fe grains is varied using a fraction, ®
(NVge/N7). The main parameters explored in this set of
simulations were @, ““Fe & 2°Al enrichment. Agop. was
varied from 0 to 10*, while ® was varied between 0 and
0.9. Subsets were performed where Ay = 0, 1 & 10.
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Figure 5. Remaining water fraction for simulations using the iron grain model.

Whilst a more accurate model overall, the grain model
displays similar characteristics to the previous model.
%UFe is still not influential except in cases of extremely
high enrichment (Agore > 10%), high ® and total “°Al
depletion. Even then, desiccation values are still far
below what 1s observed with the core model. In cases
of high “°Al enrichment, large quantities of iron grains
can actively inhibit desiccation, as there is less “°Al to
heat the planetesimal.

From these simulations it can be determined that ®’Fe
1s a markedly less effective radiogenic heating source
than 2°Al during the planetesimal formation stage.
Whilst some desiccation can occur as a result of *'Fe
heating, it is significantly less drastic compared to even
a slight enrichment of “°Al over early solar system es-
timates. Additionally, for extreme *°Fe enrichment the
system may need to undergo extremely close or mul-
tiple supernovae encounters — which could inhibit the
formation of the protoplanetary disk.
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