Heating of planetesimals from ⁶⁰Fe & ²⁶Al And the effect on the water content of protoplanets

Joseph Eatson - University of Sheffield

- Short-lived Radioisotopes (SLRs)
- SLRs in disks & planetesimal desiccation
- Planetesimal heating simulations
- *N*-body simulations with wind and SNe enrichment
- Results
- Next steps & conclusions
- Questions

Outline

Short-Lived Radioisotopes

- SLRs are radioisotopes with half-lives on the order of 1 Myr.
- ²⁶Al and ⁶⁰Fe.
- Decay of SLRs constituted bulk of heating in early solar system[1].
- OB/WR winds and SNe pollute disks with SLRs before planetary formation.
- Potential other source: AGB "interlopers" in star-forming regions[2].

Fig. Eatson+ 2024, [1] Fu & Elkins-Tanton 2014 [2] Parker & Schoettler 2023

Planetesimal desiccation

- Decay heating in planetesimals causes vaporisation and outgassing of volatiles[1].
- In the case of H₂O this leads to planetesimal desiccation & formation of water-poor planets.
- SLR heating keeps planetesimal internals molten.
- Leads to faster stratification and differentiation of rocky body.

Fig. Lichtenberg+ 2019, [1] Lichtenberg+ 2019

Photoevaporation

- Massive stars also produce copious amounts of ionising FUV/EUV radiation.
- Can destroy the gas component of the disk.
- Less gas \rightarrow less gas giants.
- Simulations suggest this could be a common occurrence[1].
- SNe would also disrupt the disk through shocks.
- Interlopers?

Image NASA/JPL-Caltech/T. Pyle, [1] Patel+ 23

Devolatilization of extrasolar planetesimals by ⁶⁰Fe and ²⁶Al heating

Eatson, Lichtenberg, Parker & Gerya 2024 - MNRAS

Motivation

- How much does the SLR ⁶⁰Fe influence heating?
- ²⁶Al has a high heating rate, has been simulated, ⁶⁰Fe has not.
- How does distribution of Iron within planetesimals affect heating?
- What is the minimum level of enrichment required for significant desiccation?

Methodology

- Series of simulations using I2ELVIS 2D geodynamic numerical code[1].
- Two ⁶⁰Fe propagation models:
 - Solid Fe core.
 - Undifferentiated Fe grains.
- Parameter space explored varying ²⁶Al & ⁶⁰Fe enrichment and Fe content.
- Measuring water retention fraction.

[1] Gerya (2019), github.com/FormingWorlds/i2elvis_planet

Results Core model

- Desiccation occurs extremely rapidly after simulation onset.
- Due to both isotopes enrichment, particularly ²⁶Al.
- ⁶⁰Fe requires extremely large quantities of enrichment, ~200x higher than solar system levels!

Results **Grain model and discussion**

- Grain model relatively similar.
- Increasing ²⁶Al enrichment by a factor of 10 can completely desiccate a planetesimal.
- 10⁴x solar ⁶⁰Fe enrichment needed to produce the same effect.
- How likely is this amount of enrichment?

Towards a unified injection model of short-lived radioisotopes in N-body simulations of star-forming regions

Eatson, Parker & Lichtenberg 2024 - ApJ, submitted

Motivation

- How common are highly enriched ⁶⁰Fe disks?
- How likely are solar system enrichment amounts for either SLR?
- Are disks enriched through SNe or early-type stellar winds?
- How dependent is enrichment on star forming region density?

Methodology

- AMUSE[1] library used to combined N-body and stellar evolution codes.
- Fractal cluster generated[2] that includes high-mass stars.
- Disks evolve to a protoplanetary system over time.
- Another parameter space exploration, varying star-forming region radius and population size.

X,Y,Z axes: position in parsecs

[1] Portegies Zwart & McMillan (2018), amusecode.org [2] Goodwin & Whitworth (2004)

- Useful ²⁶Al enrichment above solar system levels somewhat common.
- Useful ⁶⁰Fe enrichment is significantly less common, solar system-level enrichment unusually high!
- Strong dependence on median local density and enrichment.

Discussion

- ²⁶Al enrichment is wind driven, ⁶⁰Fe enrichment is SNe driven.
- SNe that produce significant quantities of ⁶⁰Fe (M \star <25M $_{\odot}$ [1]) occur late, when most disks have progressed into PP systems.
- Wind & SNe also would cause disruption of disks, large starforming regions unfavourable to enrichment in themselves.

Y-axis left: Remaining disks

Y-axis right: Remaining high-mass stars

[1] Limongi & Chieffi (2018)

Wrapping up

Conclusions And next steps

- Decay heat from SLRs in disks causes desiccation of planetesimals.
- Decay heating mainly through ²⁶Al, sims show ⁶⁰Fe needs high enrichment.
- N-body sims show that ⁶⁰Fe enrichment levels leading to desiccation unlikely.
- Solar system particularly ⁶⁰Fe enriched.
- Next steps:
 - Better enrichment models, better heating models.
 - Better disk model, variable size & photoevaporation.
 - Interloping AGB stars?

Questions?

